如何处理SEM模型中的“坏”因子?

转自竹家庄:http://zjz06.spaces.live.com/blog/cns!3F49BBFB6C5A1D86!1383.entry



我是X大学心理系的学生,目前在美国Y校访问。最近在处理数据时遇到问题不知该如何解决,之前在您的网页上冒昧向您请教过,非常感谢您当时的回复。我后来找了一些相关的文献看,知道了多组比较的大概步骤,但在统计中又遇到了新的问题,所以再次向您请教。谢谢您关注我的邮件!
我探讨的是暴力游戏对青少年攻击性影响的性别与年龄差异。研究变量包括:
  • 自变量:玩暴力游戏的程度(VVG -- 庄主注,下同)
  • 因变量:身体攻击(Physical Aggression)
  • 中介变量:信念(Belief about Aggression)、期望(Hostile Expectation)、移情(Empathy)
  • 调节变量:性别、年龄

因此我把全部被试(795人)按年级和性别分成六个组,每组100多人,想比较不同性别、不同年龄孩子模型的路径差异(庄主注:这应该是一个moderated mediation模型,对此有兴趣的读者请仔细理解本案例的模型设置及有关讨论)。
比较结构模型前,为了确定测量等同(measurement invariance -- 庄主注),我分别对信念、移情和身体攻击这三个潜变量进行了单组和多组的CFA。以因素负荷相等(factor loadings invariant -- 庄主注)为标准,最后确定了5项目的信念、5项目的身体攻击及12项目的移情测量,能够满足跨组测量等同。信念和身体攻击是完全等同,两个移情项目虽不等同,但考虑到12题中只有两题不等同,所以认为部分等同也能允许进入结构模型的比较。
上面我所提及的CFA是分别针对每一个变量(庄主注:应该是factor吧?)进行的。但当我把所有变量(庄主注:也是factors吧?)都整合到一个模型后发现,六组都不能很好地拟合总模型。我看了修正指数(modification index或MI -- 庄主注),发现问题主要出在移情这个变量上。在前面的测量等同阶段,我删掉了16个移情项目,保留了12个项目,这12个项目分属5个因子。在结构模型中,我把这个5个因子作为移情的指标(庄主注:Empathy成了一个second-order factor?),但发现指标间及指标与其他变量还存在复杂的关系,这导致了模型不能较好拟合。
我又尝试了很多次,尝试找到一个移情的测量模型(measurement model -- 庄主注),无论是单个变量的单组及多组CFA,还是放到总模型中时,都能拟合六组数据,但徒劳无功。
如果把所有变量都当成显变量,那模型都能拟合得很好。但我能这样做吗?如果把所有变量当成显变量来处理的话,那前面的测量等同检验是否还有必要?
我实在不知道该如何考虑和继续,所以冒昧请教,请您给予我指导,非常感谢!
附件的图是我在确定了各组的测量等同后,用总数据做的模型。我担心我说得不清楚,可能看看模型会有帮助。再次感谢!