请教:警告: TD 5,5 may not be identified.
<br /> 如题,该问题应该从何处下手去排查?<br /> W_A_R_N_I_N_G: TD 5,5 may not be identified.<br /> Standard Errors, T-Values, Modification Indices,<br /> and Standardized Residuals cannot be computed.<br /> <br /> Goodness of Fit Statistics<br /> Degrees of Freedom = 29<br /> Minimum Fit Function Chi-Square = 98.53 (P = 0.00)<br /> Normal Theory Weighted Least Squares Chi-Square = 87.86 (P = 0.00)<br /> Estimated Non-centrality Parameter (NCP) = 58.86<br /> 90 Percent Confidence Interval for NCP = (34.41 ; 90.94)<br /> <br /> Minimum Fit Function Value = http://bbs.pinggu.org/0.47<br /> Population Discrepancy Function Value (F0) = 0.28<br /> 90 Percent Confidence Interval for F0 = (0.16 ; 0.44)<br /> Root Mean Square Error of Approximation (RMSEA) = 0.099<br /> 90 Percent Confidence Interval for RMSEA = (0.075 ; 0.12)<br /> P-Value for Test of Close Fit (RMSEA < 0.05) = 0.00054<br /> <br /> Expected Cross-Validation Index (ECVI) = 0.77<br /> 90 Percent Confidence Interval for ECVI = (0.66 ; 0.93)<br /> ECVI for Saturated Model = 0.63<br /> ECVI for Independence Model = 2.20<br /> <br /> Chi-Square for Independence Model with 55 Degrees of Freedom = 437.31<br /> Independence AIC = 459.31<br /> Model AIC = 161.86<br /> Saturated AIC = 132.00<br /> Independence CAIC = 507.12<br /> Model CAIC = 322.71<br /> Saturated CAIC = 418.91<br /> <br /> Normed Fit Index (NFI) = 0.77<br /> Non-Normed Fit Index (NNFI) = 0.66<br /> Parsimony Normed Fit Index (PNFI) = 0.41<br /> Comparative Fit Index (CFI) = 0.82<br /> Incremental Fit Index (IFI) = 0.83<br /> Relative Fit Index (RFI) = 0.57<br /> <br /> Critical N (CN) = 106.19<br /> <br /> <br /> Root Mean Square Residual (RMR) = 0.076<br /> Standardized RMR = 0.076<br /> Goodness of Fit Index (GFI) = 0.93<br /> Adjusted Goodness of Fit Index (AGFI) = 0.84<br /> Parsimony Goodness of Fit Index (PGFI) = 0.41 这个通常与TD矩阵没有多大关系,与你的模型太复杂有关系。 我检验了数据的正态性,发现很多指标的非正态分布,于是我用mintab做了个体分布识别,发现这些指标几乎都不能显著的归属于任何一种分布,在这种情况下,我用spss做了正态性检验,根据偏度和峰度指标以及直方图的判断,选择了个别正态性稍好的指标进行COX-BOX转换,结果又多了一个符合正态性的指标。接着用eviews做了截面数据的回归,发现符合统计检验的最后就剩下四个变量了。同时请教了学校的统计老师,老师建议用smart-pls试试,但是smartpls好像取消了国内用户的访问权限,所以现在请求哪位大侠把smart-pls借我用用,非常感谢! 自己顶一下了页:
[1]