Structural Equation Modelling A Bayesian Approach
<!--<img src="http://bbs.pinggu.org/images/attachicons/pdf.gif" border="0" class="absmiddle" alt="" /> <strong>收费附件: Structural Equation Modelling A Bayesian Approach .pdf</strong>-->1 Introduction 1<br /> 1.1 Standard Structural Equation Models 1<br /> 1.2 Covariance Structure Analysis 2<br /> 1.3 Why a New Book? 3<br /> 1.4 Objectives of the Book 4<br /> 1.5 Data Sets and Notations 6<br /> Appendix 1.1 7<br /> References 10<br /> 2 Some Basic Structural Equation Models 13<br /> 2.1 Introduction 13<br /> 2.2 Exploratory Factor Analysis 15<br /> 2.3 Confirmatory and Higher-order Factor Analysis Models 18<br /> 2.4 The LISREL Model 22<br /> 2.5 The Bentler–Weeks Model 26<br /> 2.6 Discussion 27<br /> References 28<br /> 3 Covariance Structure Analysis 31<br /> 3.1 Introduction 31<br /> 3.2 Definitions, Notations and Preliminary Results 33<br /> 3.3 GLS Analysis of Covariance Structure 36<br /> 3.4 ML Analysis of Covariance Structure 41<br /> 3.5 Asymptotically Distribution-free Methods 44<br /> 3.6 Some Iterative Procedures 47<br /> Appendix 3.1: Matrix Calculus 53<br /> Appendix 3.2: Some Basic Results in Probability Theory 57<br /> Appendix 3.3: Proofs of Some Results 59<br /> References 65<br /> 4 Bayesian Estimation of Structural Equation Models 67<br /> 4.1 Introduction 67<br /> 4.2 Basic Principles and Concepts of Bayesian Analysis of SEMs 70<br /> 4.3 Bayesian Estimation of the CFA Model 81<br /> 4.4 Bayesian Estimation of Standard SEMs 95<br /> 4.5 Bayesian Estimation via WinBUGS 98<br /> Appendix 4.1: The Metropolis–Hastings Algorithm 104<br /> Appendix 4.2: EPSR Value 105<br /> Appendix 4.3: Derivations of Conditional Distributions 106<br /> References 108<br /> 5 Model Comparison and Model Checking 111<br /> 5.1 Introduction 111<br /> 5.2 Bayes Factor 113<br /> 5.3 Path Sampling 115<br /> 5.4 An Application: Bayesian Analysis of SEMs with Fixed Covariates 120<br /> 5.5 Other Methods 127<br /> 5.6 Discussion 130<br /> Appendix 5.1: Another Proof of Equation (5.10) 131<br /> Appendix 5.2: Conditional Distributions for Simulating Y t 133<br /> Appendix 5.3: PP p-values for Model Assessment 136<br /> References 136<br /> 6 Structural Equation Models with Continuous and Ordered Categorical Variables 139<br /> 6.1 Introduction 139<br /> 6.2 The Basic Model 142<br /> 6.3 Bayesian Estimation and Goodness-of-fit 144<br /> 6.4 Bayesian Model Comparison 155<br /> 6.5 Application 1: Bayesian Selection of the Number of Factors in EFA 159<br /> 6.6 Application 2: Bayesian Analysis of Quality of Life Data 164<br /> References 172<br /> 7 Structural Equation Models with Dichotomous Variables 175<br /> 7.1 Introduction 175<br /> 7.2 Bayesian Analysis 177<br /> 7.3 Analysis of a Multivariate Probit Confirmatory Factor Analysis Model 186<br /> 7.4 Discussion 190<br /> Appendix 7.1: Questions Associated with the Manifest Variables 191<br /> References 192<br /> 8 Nonlinear Structural Equation Models 195<br /> 8.1 Introduction 195<br /> 8.2 Bayesian Analysis of a Nonlinear SEM 197<br /> 8.3 Bayesian Estimation of Nonlinear SEMs with Mixed<br /> Continuous and Ordered Categorical Variables 215<br /> 8.4 Bayesian Estimation of SEMs with Nonlinear Covariates<br /> and Latent Variables 220<br /> 8.5 Bayesian Model Comparison 230<br /> References 239<br /> 9 Two-level Nonlinear Structural Equation Models 243<br /> 9.1 Introduction 243<br /> 9.2 A Two-level Nonlinear SEM with Mixed Type Variables 244<br /> 9.3 Bayesian Estimation 247<br /> 9.4 Goodness-of-fit and Model Comparison 255<br /> 9.5 An Application: Filipina CSWs Study 259<br /> 9.6 Two-level Nonlinear SEMs with Cross-level Effects 267<br /> 9.7 Analysis of Two-level Nonlinear SEMs using WinBUGS 275<br /> Appendix 9.1: Conditional Distributions: Two-level Nonlinear<br /> SEM 279<br /> Appendix 9.2: MH Algorithm: Two-level Nonlinear SEM 283<br /> Appendix 9.3: PP p-value for Two-level NSEM with Mixed<br /> Continuous and Ordered-categorical Variables 285<br /> Appendix 9.4: Questions Associated with the Manifest Variables 286<br /> Appendix 9.5: Conditional Distributions: SEMs with Cross-level<br /> Effects 286<br /> Appendix 9.6: The MH algorithm: SEMs with Cross-level Effects 289<br /> References 290<br /> 10 Multisample Analysis of Structural Equation Models 293<br /> 10.1 Introduction 293<br /> 10.2 The Multisample Nonlinear Structural Equation Model 294<br /> 10.3 Bayesian Analysis of Multisample Nonlinear SEMs 297<br /> 10.4 Numerical Illustrations 302<br /> Appendix 10.1: Conditional Distributions: Multisample SEMs 313<br /> References 316<br /> 11 Finite Mixtures in Structural Equation Models 319<br /> 11.1 Introduction 319<br /> 11.2 Finite Mixtures in SEMs 321<br /> 11.3 Bayesian Estimation and Classification 323<br /> 11.4 Examples and Simulation Study 330<br /> 11.5 Bayesian Model Comparison of Mixture SEMs 344<br /> Appendix 11.1: The Permutation Sampler 351<br /> Appendix 11.2: Searching for Identifiability Constraints 352<br /> References 352<br /> 12 Structural Equation Models with Missing Data 355<br /> 12.1 Introduction 355<br /> 12.2 A General Framework for SEMs with Missing Data that are<br /> MAR 357<br /> 12.3 Nonlinear SEM with Missing Continuous and Ordered<br /> Categorical Data 359<br /> 12.4 Mixture of SEMs with Missing Data 370<br /> 12.5 Nonlinear SEMs with Nonignorable Missing Data 375<br /> 12.6 Analysis of SEMs with Missing Data via WinBUGS 386<br /> Appendix 12.1: Implementation of the MH Algorithm 389<br /> References 390<br /> 13 Structural Equation Models with Exponential Family of<br /> Distributions 393<br /> 13.1 Introduction 393<br /> 13.2 The SEM Framework with Exponential Family of<br /> Distributions 394<br /> 13.3 A Bayesian Approach 398<br /> 13.4 A Simulation Study 402<br /> 13.5 A Real Example: A Compliance Study of Patients 404<br /> 13.6 Bayesian Analysis of an Artificial Example using WinBUGS 411<br /> 13.7 Discussion 416<br /> Appendix 13.1: Implementation of the MH Algorithms 417<br /> Appendix 13.2 419<br /> References 419<br /> 14 Conclusion 421<br /> References 425<br /> Index 427 </p><p> </p> SEM有人用吗? 下载了,学习学习,多谢<img src="http://bbs.pinggu.org/images/smilies/default/biggrin.gif" smilieid="130" border="0" alt="" /> 请问是高清晰版吗?谢谢 下了,学习学习啊 谢谢楼主分享页:
[1]